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ABSTRACT

A model of queueing for a single server by several types of customers (messages, or

jobs). with a simple dynamic priority rule, is considered. The rule is equivalent to

selecting the next server occupant type with a probability proportional to the number of

that type enqueued. The situation studied here occurs in fields such as computer and

communication system performance analysis, in operational analysis of logistics systems,

and in the repair of elements of a manufacturing system. It is assumed that the population

sizes of the items of different types are large, and that the mean service rates are

correspondingly large, in comparison with the service demand rates. Moreover, it is

assumed that the system is in heavy traffic. Under these assumptions, asymptotic

approximations are derived for the steady-state means and covariances of the number of

items of different types either waiting or being served. Numerical comparisons with

simulated results show excellent agreement, Aooesslon For
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Heavy-Traffic Analysis of Multi-Type Queueing Under Probabilistically Load-
Preferential Service Order

D. P. Gaver

Naval Postgraduate School
Monterey, California 93943

J. A. Morrison

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

This paper is concerned with the analysis of queueing for a single server by several

types of customers (messages, or jobs) under heavy traffic. A simple dynamic priority

rule is presumed to schedule next service among waiting customers when the server

becomes available. The rule is equivalent to selecting the next server occupant type with a

probability proportional to the number of that type enqueued. For generalizations, with

special attention to logistics and repair problems, see Gaver, Jacobs and Pilnick [1].

Problems similar to that considered here have been studied by Towsley [2], Yao and

Buzacott [31 and by others.

The situation studied here occurs in fields such as computer and communication system

performance analysis, and also in operational analysis of logistics systems. It is also

possible to find it in manufacturing, where each of several types of machines suffers

occasional breakdown and is eligible for repair. The total productivity of the system

depends on having a sufficient number of each machine type in operation; the present

scheduling discipline assists in this objective, although others (to be discussed in a

subsequent paper) are more effective. Note that the current discipline closely resembles a

processor-sharing scheduling rule which is freql,"ntly used for controlling multiproLessors



-2-

in computer systcms.

In a specific model formulation, there are r types of demand-producing items, and Ki is

the population size of items of type i. If Ni(t) denotes the number of items of type i

waiting for service, or being served, at time t, then the probability that a new type i

demand for service is initiated in (t, t +dt) is Xj[Kj -Ni(t)]dt + o (dt), so that X is the

service demand rate for items of type i. The service time of items of type i is

exponentially distributed with rate vi, so that the mean service time is 1/vi; service times

are all independent. Thus all queue lengths are finite (Ni(r) - K,) and a long-run or

steady-state distribution will always exist, as is true of the simple repairman problem [4].

A particular example of the probabilistically load-prcferential scheduling rules, e.g.

considered by Gaver, Jacobs and Pilnick [11, is the following. Let N(-r+)= (NI('r+),

N 2 (r+). r(7+)) denote the state of the system at time 'r+ immediately after the

service of an item is completed. Then, for N('r+) * 0, an item of type i is selected for

service with probability

qi(N(+))= (1.1)

j cjNj(,+)

where c1>0 for j E(l,2,.r). Such a service schedule gives preference, with

appropriate weights, to those types of items of which there are more waiting for service.

If one of the queues gets long compared to the others, then it is likely that an item from

that queue will be selected for service next. Hence this scheduling rule may be regarded

as a variant of serving the longest queue first.
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For N(r) * 0, let I(r) denote the type of item which is being served at time r. It is

clear from the assumptions made that (N(t), 1(t), r 0) is a finite-state-space Markov

process in continuous time with integer-valued vector state space. In princir!e, the joint

probability distributions

P{N(r)=n, (t)=i IN(O)=n(O)} Pi(n,t;n(O)), iE(1,2, ... , r), (1.2)

where 0-< ni--K, j E (1,2, ... , r), can be found, given the initial condition n(0), by

r
solving a system of r H1 (Kj+ 1) linear differential equations, the Kolmogorov forward

j=1

equations [4]. All probabilistic quantities of interest can be found from such equations, or

similar backward equations. In practice such solutions involve extensive computing, so it

is of interest to proceed otherwise.

To simplify the analysis, we make two basic assumptions. The first is that the system

is large, i.e. that the population sizes Ki = aoti, where a >> 1 and ai = 0(1). Since a fast

server is needed to accommodate a large system, it is also assumed that vi = a pii , where

ti= 0(1). The second assumption is that the system is in heavy traffic circumstances.

meaning that 1 Xiai/p.i > 1. This condition ensures that the server is extremely unlikely
i=1

to be idle. Under these circumstances, Gaver, Jacobs and Pilnick [1] derived a diffusion

approximation, and obtained numerical results for the time-dependent problem.

In this paper we consider the steady-state problem under the same circumstances, and

derive asymptotic approximations for a > > 1 to the means and covariances of the number

of items of different types in the system, i.e. either waiting or being served. The lowest

order approximation to the means agrees with that obtained from the diffusion

approximation [1]. In this paper we also derive the first order correction term to the

means. Our approximation to the covariances differs from that obtained by the diffusion
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approximation, when the service rates vi are unequal. However, numerical results indicate

that the difference is not very large.

In §2 we formulate the problem, and introduce generating functions. We then

introduce the scalings corresponding to a large system in heavy traffic, and look for an

asymptotic expansion in inverse powers of a. The leading term in the expansion is

ob:ained in §2, and the first order correction term is derived in §3. Asymptotic

approximations to the means and covariances of the number of items of different types in

the system are obtained in §4. Numerical comparisons, which show that the asymptotic

and simulated results are in excellent agreement, are presented in §5. In the appendix we

give an alternate derivation of the lowest-order asymptotic approximation to the means

and covariances, and indicate how we obtain the first order correction to the means by this

method. We also derive the lowest-order asymptotic approximation to the joint probability

density function.

2. AN ASYMPTOTIC ANALYSIS

Without special boundary conditions the setup described in the previous section is an

irreducible finite Markov chain and hence possesses a steady-state or long-run solution

lim Pi(n, t; n(O)) = pi(n) , i E (1,2 ... r) , (2.1)
t_'e

where n = (n1 ,n, ..... n,). We note that pi(n) = 0 if ni= 0, and pi(n) = 0 unless

0 : n:5 K, n * 0, where K = (K 1, K., ... , K,). The steady-state probability that the system

is empty is denoted by p (0). For 0- n-5 K, n * 0 and n # K, qi(n) is the probability

that, when an item departs and leaves the system in state n, then an item of type i goes

into service. We assume, for the time being, only that qi(n)= 0 if ni = 0, qi(n) = I if

nj = 0 for j * i and IlSn i : Ki, and ; qi(n) = I for 0:5 n:5 K, n:# 0 and n * K.
iz1
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We denote by ej the vector with components eij = 6ij. Then, in a standard manner, we

obtain

r r
I XjKj p(O) E vjpj(ej), (2.2)
j=1 j=1

X j(Kj- 8 iJ) 4 vi p i(ei) = i K i p(O) + 2 vj p j (ei +e j ) -  (2.3)

and, for ni*0, n:# ej and 0-5 n- :K,

Xi(K-n 1) + viplp(n)

r r
, Xj(K-nj+ 1)p,(n-ej) + qi(n) 2 vjpj(n+ej). (2.4)

j=1 j=1

We introduce the generating functions

ui(x) = 2 pi(n)x' x, (2.5)
0 s n !

and note that ui(O) = 0. We now multiply equations (2.2), (2.3) and '(2.4) by 1, xi and

x?) x"xc', respectively, and sum on i and n. It is found that

2 Xj(l-xj)K (0) + I _ T L 0 -(1-xj) uj(x). (2.6)
j=1 j-1 i-1 ai-1 Xi

r

This equation, which holds for general qi(n) with . qi(n) = 1, will be useful later. The
i=l

equation is vacuous if x = 1, so that one of the original equations is redundant. The

normalization condition is

r

p(O) + 2 u,(1) = 1. (2.7)

We now consider the particular case
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qi(n) = -- , (2.8)

!c 1n11-1

where c1> 0 for I E (1, 2..... r), and multiply equations (2.3) and (2.4) by cixi and

r
cinx' ... x,, respectively, and sum on n. After some manipulations it is found that

rr r
1CIxI XjK,( 1- xj) ui

= p(O)cjXjx + cxi ( I - - I 1 ax (vjuj)

+ . ¢IX, xjxi(I-xj) .(2.9)a-1 a -1 xxj

We are interested in the means and covariances of the number of items of different types

in the svstem, namely E(nj) and E(njnk) -E(nj)E(nk). We note, from (2.5), that

-8u a2 U-u i (2 10E -(n) ( I , Eax(ax (1)+ (1)1. (2.10)

We now introduce the scalings corresponding to a large system in heavy traffic, and let

Kj = aa, vj - a jE(1,2, ... , r); a>>l, (2.11)

where

> 1 (2.12)
j=1 PJJ

Since, from (2.10), we are interested in the behavior of u,(x) in the neighborhood of

x = 1, we also let

ej f ( (7/a, uj(x) = )J(a), j (1,w2h.... r). (2.13)

Then, from (2.6), (2.7) and (2.9), we have
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r
p(O) + d Wi(O) 1, (2.14)

:Il

"IO[p(OP + , i(E)I (--'a) ' wj ). (2.15)

j=,!. a~ -

and

1=a j= (1 -/a) 8E, a(1- _i a)

+P(Q) Niii X EC
a a a j=! 1=1 al

+ L1- jk + cjj( j)(Ia )j~ j-1 a a Ia

+- XjE, EjI C, (I -0.=(o. r(16)a j-, al aj k

We assume an asymptotic expansion of the form

,() ( +) _ 1 + , p(O) 0, (2.17)
a

since we expect p (0), the probability that the system is empty, to be exponentially small in

a. Then. to lowest order, from (2.16) we obtain

r a1 4o) r a&()
p., EC, -i c, 0. (2.18)

These equations are satisfied by

o o) ci 60
- & (2.19)

where the function 6(k) is to be determined. But, from (2.15) and (2.17), we havc

,j < , ( , . (2.20)I j. ,=.1:-
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We look for a solution of the form

O(E) = 6(O) exp(- P ) "

so that, from (2.19),

qp, °  cif3,= - a0__ , [3p0P ). (2.22)
,-i ti p-i

We let

A ' (2.23)
i .=1 L'i

Then (2.20) is satisfied if

A X j~ xt'1j
A -j(otj P) cjPj, i.e., P (A X cj ) (2 .2

Since we want I3j > 0, j E(1.2 ..., r), we want A > 0. But, (2.23) and (2.24) imply that

F(A) - - 1 = 0. (2.25)
j.,! j(AXj'+cj)

But F(0)>0, because of assumption (2.12), and F(+-)=-l. Since F(A) is a

decreasing function of A for A > 0, it follows that there is a unique solution A > 0 of

F(A; = 0. From the normalization condition (2.14), and (2.17), we have

b (0) = 1. (2.26)
i=l

It follows from (2.22) and (2.23) that

0(0) (2.2A

This completes the determination of 0( ), and hence d0°( ).
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In the next section we determine 011)(6). The reader who is not interested in the

details may proceed to §4, where the asymptotic approximations to the means and

covariances are evaluated.

3. THE CORRECTION TERM

We now consider the first order correction term tJM)() in the asymptotic expansion

(2.17). It follows from (2.16) that

r °r ad) r ) r
2 c,- c Lj + P- =i i - +i -jeo)--

1=1 041 atj j-

r r ao}°)  r
jl I = I~ j=1

r aA a2d0r 0 o
- cj - - I XJ I c, (3.1)j-1 d j -1~ 1=1 ~ d.

It is found, from (2.21), (2.22) and (2.24), after some reduction, that

r r kb JMr
.~ I - j -1 ak

ci ir r r1
2 . -() L ]d Acil ij+A i cj Pj( 2 tj- E) - cl 2 cif3j Ej . ( 3 .2)

-=1 ]i 1 j-1

We note that if we sum (3.2) on i, and use (2.23), then .oth sides of the equation are

identically ze. ).

In view of (2.21), we let

=,1 x)(t) exp(- r Pk Ek) (3.3)
k-1l

and we define

r r

B = 2 c1 3j, D = c; j. (3,4
J~i j=l
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Then, since 0(0) = -I/A,

r r,~
Ci D - PAci-ABw +(2Ap.i-B) . . (3.5)

A2p.il j1

We look for a solution of the form

_!, tj c1  [ 86(1) 1 r

,±i 1 i i6(')(E) + ai + kI bikEk, (3.6)

and note that the terms involving 0b1) are annihilated by the operator on the left side of

(3.5), i.e. they provide a solution of the homogeneous equation.

It is found that (3.5) is satisfied by (3.6) if

Cir CA (3.7
c4 1 Ai bjA - B 1±,bik = [(- 2 Ap..i)ckAk + ABpxi~ik], (3.7)

and

r r r
Cipi 2 Lj aj - B iai = ci2 b -' i c ¢bil " + (Aci.ti_-D). (3.8)

j=j= -I

If we sum (3.7) and (3.8) on i, and use (2.23) and (3.4), then both sides of each equation

are identically zero. Since we are looking for a particular solution of the inhomogeneous

equation, we may take

r r

Y pjbjk = 0 p.jaj = 0. (3.9)
jTe jl

Then (3.7) and (3.8) imply that



bik - C. [(2- J Ck_ 0k- B8ik] (3.10)AB L A L

and

a 2c= (D -Bc). (3.11)

AB 2 i

It remains to determine the single function d)(1)(E) in (3.6). But, from (2.15), (2.17)

and (2.20), we have

r +- r
j IIxl i I a I aJ 1

i-i i- j=i

r r &( r 0= XjO 1 , +2 L 'J1 °J "  (3.12)
j=1 i=1 atJ j=il

It follows, from (2.21)-(2.24), (2.27) and (3.3), that

r r r r a×(() r
_ c3iP I )(P) + 7 XA 1 w, 1 - I j×X"A j=1 i=1 j-2 i 1 t j=1

= 1 (cj-AX1 jM3 1 . (3.13)
j=1

Then, from (3.6), we obtain

rC , c* 8 2 r ci a60( )  r _b
(

_
)

., ,= I + - , cf3pjj "- (AXj+cj)tjj=1 i *-1 Lji aejii A "- i- i a Ei " -1
= - ~~j=l j=

Acj-j~j i +  bik k

r r r r

Aj~ (c-~ '2 - A j-i i,-i k-1

- jj r bj + I j j j+ bjkEk (3.14)

j I j I j Ik-1

We look for a solution of the form

+r r r:
6(1)(C) = K< " Ykk + - WklkIt, (3.15)

k-1 2 k-i 1-1

where we assume, without loss of generality, that
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Wk1 = W/k (3.16)

We define

j.. -I bik -jbjk + (AXj-cj) 3 jSjk, (3.17)

A==

hj= XjF + I ai + ] bij - p.1a1 , (3.19)
A i i

and

Ci'Yi
(3.20)

i-1 PLi

Then, it follows from (3.14)-(3.20) that

(3.21)

I jk k - (A[2Lc-(A~j + j gjk] + I j C. 3 - (AXj+cj),yj + hj = .
J-1 k-l AJ 1

In view of the symmetry in (3.16), we deduce from (3.21) that

[(AXj+cj) + (AXk+Ck)]wjk = (cj1 jF k + Ck 3kFj) + gjk + gkj. (3.22)

Hence,

=jk (c 1Pjik + Ckl 3kFj) + (
A a[(aXj+cj) + (Ahk+ck)] + k' (3.23)

where

fjk = (g, + 9k.) (3.24)

[(AXj+c 1 ) + (AXk+ck)] fkj.

We define
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r CA- (3.25)

Then, from (2.23), (3.4), (3.10), (3.17) and (3.24), we obtain

1 1 1 C(3.26)
6ik = jPjCkPkI----- + \jjIk, (.6A 'Pj P-k A

and
C

2 (XjPjSjk - - cjPjCkIk)

fjk- = [(AXj+cj) + (Akk+ck)] (3.27)

From (3.18) and (3.23) we have

rk = - Ck+ F) + , (3.28)

A j-, L.J[(AXj+cj) + (AXk+Ck)] j-l Lj

which is a linear system of equations for rk, k E (1,2, ... , r), with known coefficients,

which has to be solved numerically, in general. Once the Fk have been calculated, 0Wjk is

given by (3.23). Also, hj is given by (3.19). We define

Gci (3.29)

Then, from (2.23), (3.4), (3.10) and (3.11), we obtain

= k2 C 1 2 (c-)
hj = xjrj + cj 1 Xj( - C +- 2 (Ac )]. (3.30)

AB A p.) A GI

Next, from (3.21), we deduce that

(AXj+cj) y = j- cjf3 j + h. (3.31)

Hence, from (3.20), we find that

=11-h(3.32c)hj
A . L(t~j j-, Ly(AX-+c,-)
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But, from (2.23),

1r c~ 1 r Cjjj
1 7 C r- .1 cjpj > 0. (3.33)

A _1 j(Ahj+cj) j-1 p.j(AXj+cj)

Hence e is determined, and then "yj is given by (3.31).

It remains to determine the constant K in (3.15). But from the normalization condition

(2.14), and (2.17) and (3.3),

0 d"(1)( 0 ) = (0) (3.34)
i=l i=1

It follows from (3.6) and (3.15) that

j[-S- (Yi ~i K) + a,] 0. (3.35)

Hence, from (2.23), (3.11), (3.20) and (3.29), we obtain

E 2
A-= + A28 (AD -BG). (3.36)

This completes the determination of ( and hence XfI)(g) and g4I)( ).

4. THE MEANS AND COVARIANCES

We now evaluate the asymptotic approximations to the means and covariances of the

number of items of different types in the system. From (2.10) and (2.13) we have

r i 2 r a2 .1
E(n) = -a -- (0), E(njnk) a , a~Ja-"'(0) + SjkE(nj). (4.1)

Hence, from (2.17), we obtain the asymptotic approximations

E(n)- - a (0) + - (0) + "'' , (4.2)

and
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E,(njn)) - bjkE(fj) 8a atk (0) + a atki4- (0) + (4.3)

From (2.22), (2.23) and (2.27) it follows that

-0)

I --i- (0) = 3j. (4.4)

Also, from (3.3), (3.6) and (3.15), we have

- (0) - (w11-Pi3y)) + bij - 3jX i.)(O). (4.5)

Hence, from (2.23), (3.10), (3.18), (3.25) and (3.34), we obtain

(0) = Fj - A ̂Ij + cj3j B A7 - j" -(4.6)

From (4.2), (4.4) and (4.6) we find the asymptotic approximations to the means,

E(nj) - a j + [AYj-rj+ci JP (- + - + (4.7)

The quantities P3j are given by (2.24), where A is the positive root of (2.25), and B and C

are given by (3.4) and (3.25). Also F, j E (1,2, ... , r), satisfy the linear system of

equations (3.28), subject to (3.27), and -yj is determined from (3.29)-(3.32).

Next, from (2.19), (2.21), (2.23) and (2.27), it follows that

ra

a1 ja k (0) = 13 P13k. (4.8)

Hence, from (4.2)-(4.4) and (4.8), we obtain

E(njnk) - E(nj)E(n*)

(O)+ j O+[Pk .+ (0) (4.9)

to i- Iajak8 at1
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But, from (3.3) and (3.34),

( (0)] = (0). (4.10)
Latk atk j=1

Also, from (2.23), (3.6), (3.15) and (3.16), we have

E a j (0) = - A j. (4.11)

From (4.9)-(4.11) we find the asymptotic approximations to the covariances,

E(njnk) - E(nj)E(nk) - a(Pj Sjk -A wjk) + , (4.12)

where wjk is given by (3.23) and (3.27). We note that the covariances, as well as the

means, are of order a.

We now consider those systems for which

Xj = X, ci = c, jE(1,2 .... r), (4.13)

since it is then possible to explicitly solve (2.25) for A and (3.28) for Irk- We note that

assumption (2.12) is now

rj=
> 1. (4.14)

j-fi1 LJ

The solution of (2.25) is found to be

A C= r c (4.15)

i .j X

Also, from (2.24),

Ahtj

Pj= ( c (4.16)
(AX+c)

and, from (3.27),
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r3j -E 2 (417
fjk = (AX+c) X A (

where, from (3.25),

C = C 1 (4.18)

We define

I" = -. (4.19)

j-1 P-j

Then. from (3.28) and (4.15)-(4.17).

A(2AX+c)F - c=fl3k + 2cAPk '-. - . (4.20)

If we divide (4.20) by P-k and sum, we find that

L - (AX-c). (4.21)

Hence, from (4.20),

F ______ [2X cC]
(2 C )k 2X cc (AX+c (4.22)

It follows from (3.23), (4.17) and (4.22) that

Pj 8jk - A W k

c j8 jk + C2
Ijlk (2A\ + 2AXc+c 2 ) - X( + 1(4.23)

(AX+c) (AX+c)(2AX+c) A3 \ P-j P-k

which gives an explicit expression for the asymptotic approximations (4.12) to the

covariances.

It remains to calculate the first order correction term to the means in (4.7). The

quantities hj. e and ",j are obtained in a str -, htforward mar,;-r from (3.29)-(332) and

S__ I . y1p (3.29)-(3.32)Il INI I~l ~l
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(4.22). It is then found from (4.7) that

E(nj) - 3 + (4.24)
A(AX+c)(2AX+c) ( j

Since our approximation (4.12) to the covariances differs from that obtained by the

diffusion approximation [1], we give an alternate derivation of our results in the appendix.

Corresponding to the scalings in (2.11) we let nj = a3j + N\avj in (2.4), with qi(n) given

by (2.8). We then develop an asymptotic expansion in inverse powers of /'a for

cbi(v) = ar2 1 pi(n). It is found that, to lowest order, i±,4i(v)-c 1p1(D°)(v), where

A (1(0)(v) is a multivariate Gaussian probability density function. From this we are able to

obtain the lowest order approximations to the means and covariances, and we again obtain

(4.12) and E(nj) = ap3j + 0(1). Although we omit the rather lengthy details, we have in

fact carried out the analysis to the next order in the asymptotic expansion, and have

verified that it leads to the approximation (4.7) to E(nj). It is of interest that the

asymptotic expansions of the densities are in inverse powers of \/a, whereas the

expansions of the moments are in inverse powers of a.

The difference in the equation for the covariaices between our approximation and the

diffusion approximation [1] is pointed out in the appendix.

5. NUMERICAL EXAMPLES

In order to check the accuracy of the approximations proposed, several systems were

both simulated and approximated. In all cases studied the agreement between the

asymptotic expansion approximation and simulation was excellent for both mean and

standard deviation of the steady-state distribution. The mean of the diffusion

approximation agrees with the lowest-order asymptotic approximation; the standard

deviation of the curr--t diffusion app-'-ximation agrees precisely with the lowest-order
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asymptotic approximation only when the service rates are identical, but correspondence is

quite close numerically for all situations investigated to date.

Here are the systems, and their properties.

System I
(r = 5)

1 2 3 4 5

Ki: 100 110 120 130 140

Xj: 1.3 1.3 1.3 1.3 1.3

vi: 50 100 300 400 450

ci: 1 1 1 1 1

Means

Asymptotic: 81.40 89.54 97.68 105.82 113.96
Simulation: 81.14 89.39 97.47 105.60 113.74

(95% Conf.) (81.04, 81.24) (89.23, 89.54) (97.37, 97.57) (105.42, 105.79) (113.53, 113.95)

Std. Deviations

Asymptotic: 3.73 4.38 4.93 5.23 5.50
Diffusion: 3.75 4.38 4.91 5.20 5.47
Simulation: 3.75 4.38 4.89 5.24 5.56
(95% Conf.) (3.67, 3.82) (4.31, 4.45) (4.80, 4.97) (5.17, 5.31) (5.48, 5.65)
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System 2
(r = 5)

i: 1 2 3 4 5

Ki: 50 100 150 200 250

Xi: 1.3 1.3 1.3 1.3 1.3

vi: 50 100 300 400 450

Ci: 1 1 1 I 1

Means

Asymptotic: 39.18 78.37 117.55 156.73 195.91
Simulation: 39.10 78.17 117.35 156.26 195.57
(95% Conf.): (39.03, 39.18) (78.05, 78.28) (117.12, 117.57) (155.95, 156.57) (195.30, 195.84)

Std. Deviations

Asymptotic: 2.78 4.25 5.85 7.13 8.34
Diffusion: 2.85 4.33 5.90 7.24 8.56
Simulation: 2.78 4.21 5.90 7.19 8.33
(95% Conf.): (2.75, 2.80) (4.16, 4.27) (5.81, 6.00) (7.13, 7.25) (8.26. 8.40)

The simulations were carried out on an IBM 3033 computer at the Naval Postgraduate

School, using the LLRANDOMII random number operating package; Lewis and Uribe

[5]. Time-dependent queue lengths were simulated: an event clock was advanced at either

job arrivals or service completions, and queue lengths were suitably incremented or

decremented. The current queue lengths were recorded at fixed discrete time steps; 500

independent replications were recorded. A batch mean process was utilized to obtain the

confidence limits. For further details see Pilnick [6].

For the two systems displayed, and for many others explored, the leading term

asymptotic agreement with simulation was well within the 95% confidence limits displayed

for the latter. Diffusion approximation was also good, but slightly less accurate than the

asymptotics described here. A full description of the diffusion approximation approach
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taken is given in Gaver, Jacobs and Pilnick [1]. The small size of the standard deviations

as compared to their means is noticeable: certainly there is little resemblance of the current

system behavior to that of a system with multi-type Poisson arrivals for service. In the

latter situation the queue length standard deviation will be close to the corresponding

mean queue lengths in heavy traffic. Of course in the case of multi-type Poisson arrivals

there will be a steady-state solution only if a suitable traffic intensity for the system is less

than unity; no such condition need be satisfied for the finite systems considered in this

paper.
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APPENDIX

We here give an alternate derivation of the asymptotic approximations to the means

and covariances of the number of items of different types in the system. Corresponding to

the scalings in (2.11), we let

n= a \a v, pi(n) = (v,')/a"'2, (A1)

and it will be shown that [j is given by (2.24). From (2.4) and (2.8), we have

r /P y.
+ xj'( '- j-pj - [(')- (,'-ejV%-a)1. 3 j .Jkkv))

Va

= - ( XP,,(v - ei/j)+ r , %,"-a)+e1 /") (A2)
a j, 2 Ck(f3k+k/l/a) j=1

k=1

If we expand in inverse powers of Va, we obtain

r 1i ) [ (a- - '] (V)+

c. rr

B [3-V a (I. ii B k ckJ ' J [bi(v) + 0a. 'L(v) +, (A3)
k=1 j~iVa a'i

where B is given by (3.4).

If we sum (A2) with respect to i, we find that

r r Vj
(v) + j(-j- [d(v)- (v-ej/Va)]

i jI Va

1 r r r

E - Xj (b,(v-ej/Vaa) + X p.j(v+ej/Via). (A4)
a j=l i1 j-1

It follows that
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7 11- v 2-(v) 1 a ' (v) + • • •

Or"([)..•(.A5

j-1 i2 j 1

We assume an asymptotic expansion of the form

1. 1 2(v

dki(v) - ( "O)(v) + 1 d1, )(v) + I c(v) + " (A6)

Then, from (A3), we obtain

(0 ) (V .Ij*}O)(v) = ci[ (D((v)), (A7)
B = -1

where cI(O)(v) is to be determined. But, from (A5),

r r ad, 0) r jo
7, avjp) 7 L (A8)j-1 i i aj. j=l v

It follows from (2.23) and (A7) that

E [A Xj(a j- P) - cjpj] - = 0. (A9)

j=1 vj

This equation is satisfied if (2.24) holds, which we assume to be the case.

Next, from (A3) and (A6), we have

ir c P r r
L(()V p.1ELL(v) - X- CkVk) I

j- 1  
j-1

r a d )  a )
+ li I. xj Xj-3j) -. (AlO)
Beje jf(l (4 a (

Hence, from (2.24) and (A7), we obtain



A-3

i(( = cip3i col)(v + Ci ( - Ck r
B k=1

CA qi3 -.i cj j cgj(Al11)

BLav

where V() is to be determined. But, from (A) and (A6),

r r r r dj,
± X1 (a,-~31)( -

1)

I ) (cj-pd) 2 2* 1  L j
j.1 i 1 dyj j=1 ,vj

r r a 0  r r 2 0)

- j~ 8 Ill. + Votjc~-p3) 11t'
j Il i I j l 1 ,.l

I 020v, 0)

j i i 1= L vj (A12)

From (A7), (All) and (A12), with the help of (2.23), (2.24) and (3.25), it is found,

after considerable reduction, that

1 r (i L)r a2O)8r0& 0 )

71 j( CA I2(Ck (0) CA j

jL c.pj-i - "k~0  
- J2 ';0

j1 k =vjk j=1

+ r Ck r a r,,
1A - 7 CA-(k(: 0 )- __ (AXj+cj) (vi0 )) = 0, (A13)
A k-1 Pk j - allj. = av -

k j j'=I

an equation involving T(o) only. From (Al) the normalization condition implies

asymptotically, from the Euler-Maclaurin summation formula [7], that

x x x

f f 1 di(v)dv1 "'" dvr = f 4 1(v)dv - 1. (A14)
-X -xi=i -xi=

Hence, from (A6),

f b b(°(v)dv = 1, f I ,b'1 (v)dv = 0. (A 15)

It follows from (2.23) and (A7) that
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f c(O)(v)dv =(A16)
A

We let

Mi A f vi (O)(v)dv. (A17)

Then from (A13), after multiplication by vi and some integrations by parts, we obtain

I Ck (A18)
(AX 1ic)Mc Ci-i A= 'Mk

A k-1 ILk

Hence,

e nc, A = 0. (A19)

It follows from (3.33) that A=0, and then from (A18) that Mi = 0. Consequently, from

(A1), (A6), (A7), (A15) and (A17), E(nj) = alpj + 0(1). We have in fact carried out the

analysis to the next order in the expansion (6), and have verified that it leads to the

asymptotic approximation (4.7) to E(nj). However, we omit the rather lengthy details.

Next we consider the covariances, and let

x

Mil = A f viYI (O) (v)dv. (A20)

If we integrate by parts and use (A 16), we obtain

X a2(D(0
)

A f vivi avv- -- dv =-- I8k + 1j Sik ,  (A21)

and

A f v i v1 '3 (v k  °))dv = - (8 ,jMlk + 81jM,k). (A22)

Hence, from (A 13), we find that
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1_ r C ._(ciiMk+ClPlMik)

[(AXi+c i ) + (AX1 +cl)]Mil- "- -. cM
A k-1 9-k

- 2cif31B1 t + -L cific~t 2C 1 1 (A23)

If we let

Mil -= Pi 811 - A wot , (A24)

then we obtain equation (3.23) for wojk, where rj and fjk are given by (3.18) and (3.27).

The asymptotic approximations (4.12) to the covariances follow from (Al), (A6), (A7),

(A20) and (A24).

We remark that in the diffusion approximation [1] to the covariances, the off-diagonal

terms on the right-hand side of equation (A23) are absent, although the diagonal terms

agree exactly.

We will now show that A ((O) (v) is a zero-mean multivariate Gaussian probability

density function. We introduce the characteristic function

X(0)(y) = A f ev vy = V(Y,, (A25)

where i = "'-. If we integrate by parts, we obtain

M vya 2 ((O)
A f e' y  dv = - yjykX(°)(Y), (A26)

_ aVi avk

and

A f eiv'Y a (vk((°))dv = - YJa (A27)

It follows from (A 13) that



A-6

i-i ijY L7 jP CkI~kYJYk]X (0)(Y)

1 JC1 'L A (-) I

- 1  Cji PJYJ a + (A kX+c )yJ a  0 = . (A28)-kal. Lk j=1 y J. -1y

But, from (A 16), (A 17), (A20) and (A25), since Mj = 0, we have

x ()(0) = 1, 8 (0) = 0, aa (0) = Mjk. (A29)
ayj aYj Myk

It is straightforward to verify, with the help of (A23), that (A28) and (A29) are satisfied

by

x° xp 2 MimYiYm), (A30)

which establishes the desired result [8].
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